Modeling and Forecasting Intraday Electricity Load
نویسندگان
چکیده
This paper aims models electricity load curves for short-term forecasting purposes. A broad class of multivariate dynamic regression model is proposed to model hourly electricity load. Alternative forecasting models, special cases of our general model, include separate time series regressions for each hour and week day. All the models developed include components that represent trends, seasons at different levels (yearly, weekly etc.), dummies to take into account weekends/holidays and other special days, short-term dynamics and weather regression effects, discussing the necessity of nonlinear functions for cooling effects. Our developments explore the facilities of dynamic linear models such as the use of discount factors, subjective intervention, variance learning and smoothing/filtering. The elicitation of the load curve is considered in the context of subjective intervention analysis, which is especially useful to take into account the adjustments for daylight savings time. The theme of combination of probabilistic forecasting is also briefly addressed.
منابع مشابه
Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study
Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...
متن کاملElectricity Load Forecasting by Combining Adaptive Neuro-fuzzy Inference System and Seasonal Auto-Regressive Integrated Moving Average
Nowadays, electricity load forecasting, as one of the most important areas, plays a crucial role in the economic process. What separates electricity from other commodities is the impossibility of storing it on a large scale and cost-effective construction of new power generation and distribution plants. Also, the existence of seasonality, nonlinear complexity, and ambiguity pattern in electrici...
متن کاملNonparametric modeling and forecasting electricity demand: an empirical study
This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both intraweek and intraday seasonalities. An intraday seasonal cycle is apparent from the similarity of the d...
متن کاملTriple seasonal methods for short-term electricity demand forecasting
Online short-term load forecasting is needed for the real-time scheduling of electricity generation. Univariate methods have been developed that model the intraweek and intraday seasonal cycles in intraday load data. Three such methods, shown to be competitive in recent empirical studies, are double seasonal ARMA, an adaptation of Holt-Winters exponential smoothing for double seasonality, and a...
متن کاملForecasting Intraday Time Series with Multiple Seasonal Cycles Using Parsimonious Seasonal Exponential Smoothing
This paper concerns the forecasting of seasonal intraday time series. An extension of Holt-Winters exponential smoothing has been proposed that smoothes an intraday cycle and an intraweek cycle. A recently proposed exponential smoothing method involves smoothing a different intraday cycle for each distinct type of day of the week. Similar days are allocated identical intraday cycles. A limitati...
متن کامل